Zhenlong Yuan

(+86) 151 1795 1511 | yuanzhenlong21b@ict.ac.cn | Beijing, China | ☎ Google Scholar

EDUCATION.

Institute of Computing Technology, Chinese Academy of Sciences (ICT, UCAS)

Sep 2021 - Now

- Degree: Doctor | Advisor: Zhaoqi Wang | Major: Computer Application Technology | GPA: 3.77 / 4.0
- Specialization: 3D Computer Vision (3DCV), Vision Language Model (VLM), MultiModal Machine Learning (MMML)

Queen Mary University of London (QM)

Sep 2017 - Jun 2021

• Degree: Bachelor | Major: Telecommunications Engineering and Management | Rank: top 2 % | GPA: 3.83 / 4.0

Beijing University of Posts and Telecommunications (BUPT)

Sep 2017 - Jun 2021

 \bullet Degree: Bachelor | Major: Telecommunications Engineering and Management | Rank: top 2 % | GPA: 3.83 / 4.0

RESEARCH EXPERIENCE.

TSAR-MVS, *Textureless-aware Segmentation Guided MVS* | (China)

May 2022 - Apr 2023

- We present **Iterative Correlation Refinement** to refine pixel estimates based on the surrounding confidence neighbors.
- We introduce **Textureless-Aware Segmentation** to achieve the discrimination and planarization of textureless areas.

SD-MVS, Segmentation-Driven Deformation MVS | (China)

Mar 2023 - Aug 2023

- We adopt SAM to extract **depth edge as prior** to guide patch deformation within **depth-continuous areas**.
- We introduce **spherical gradient refinement** on normals and pixelwise search interval on depths for better refinement.
- We propose the EM-based hyperparameter optimization to alternately optimize matching cost and hyperparameters.
 MSP-MVS, Multi-Granularity Segmentation Prior Guided MVS | (China)
 Sep 2023 Mar 2024
- We leverage Semantic-SAM to aggregate multi-granularity depth edges as prior for edge-confined patch deformation.
- We propose adaptive equidistribution and disassemble-clustering to facilitate **attention-consistent patch deformation**.
- We present the disparity-sampling synergistic 3D optimization to help identify global-minimum matching costs.

DVP-MVS, Synergize Depth-Edge and Visibility Prior for MVS | (China)

Apr 2024 - Aug 2024

- We introduce depth-edge prior, which generates fine-grained homogeneous boundaries for stable deformation.
- We restore visible areas with reprojection post-verification, thereby facilitating visibility-aware patch deformation.
- We introduce aggregated visible hemispherical normals and local projection depth differences on epipolar lines.

PUBLICATIONS (Total: Seven Papers. First Author: Five Papers)

- 1. **Zhenlong Yuan**, Jiakai Cao, Zhaoqi Wang and Zhaoxin Li. TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. (Pattern Recognition, CCF-B, IF8.0, Paper Accepted)
- Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang. SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. (AAAI 2024, CCF-A, Paper Accepted)
- 3. **Zhenlong Yuan**, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang. MSP-MVS: Multi-Granularity Segmentation Prior Guided Multi-View Stereo (AAAI 2025, CCF-A, Paper Accepted)
- 4. **Zhenlong Yuan**, Jingguo luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao and Zhaoqi Wang. DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. (AAAI 2025, CCF-A, Paper Accepted)
- 5. **Zhenlong Yuan**, Zhidong Yang, Yujun Cai, Kuangxin Wu, Mufan Liu, Dapeng Zhang, Zhaoxin Li, Hao Jiang and Zhaoqi Wang. SED-MVS: Segmentation-Driven and Edge-Aligned Deformation Multi-View Stereo with Depth Restoration and Occlusion Constraint. (IEEE TCSVT, CCF-B, IF7.9, Under Review)
- 6. Jiakai Cao, **Zhenlong Yuan**, Zhaoxin Li, Tianlu Mao and Zhaoqi Wang. NPMVS: NeRF-based Polarimetric Multiview Stereo. (**Pattern Recognition, CCF-B, IF8.0, Paper Accepted**)
- 7. Kehua Chen, **Zhenlong Yuan**, Tianlu Mao and Zhaoqi Wang. Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. (AAAI 2025, CCF-A, Paper Accepted)

AWARDS _

- Two College Innovation and Entrepreneurship Projects. (National-Level and City-Level in 2019)
- Seven Academic Excellence Scholarship Awards. (Second Class in 2017-2021 and First Class in 2021-2024)
- Three Outstanding Student Awards. (2021-2024) | Lenovo Enterprise Scholarship (2024)

SKILLS_

Programming Python, C/C++, CUDA, CMake, Matlab, Git, LaTeX

Technologies Linux, Tensorflow, Pytorch, OpenCV

Languages Mandarin Chinese (Native), English (Conversational, CET-4: 555 / CET-6: 460)